Study BME in Thailand 2007

วันพฤหัสบดีที่ 11 มิถุนายน พ.ศ. 2552

What is nanotechnology?(6)

What is nanotechnology?(1):> 1. The Significance of the Nanoscale(2):>2. New Materials: Nanomaterials(3):>2.1 Nanomaterials(4):>3. Nanomaterial Science(5):>3.1 Nanoscale in Two Dimensions(6):>3.2 Nanoscale in Two Dimensions(cont.)(7):>3.3 Nanoscale in Three Dimensions(cont.)(8):>3.4 Nanoscale in Three Dimensions(cont.)

3.2 Nanoscale in Two Dimensions(cont.)

b) Inorganic NanotubesInorganic nanotubes and inorganic fullerene-like materials based on layered compounds such as molybdenum disulphide were discovered shortly after CNTs. They have excellent tribological (lubricating) properties, resistance to shockwave impact, catalytic reactivity, and high capacity for hydrogen and lithium storage, which suggest a range of promising applications. Oxide-based nanotubes (such as titanium dioxide) are being explored for their applications in catalysis, photo-catalysis and energy storage.

c) NanowiresNanowires are ultrafine wires or linear arrays of dots, formed by self-assembly. They can be made from a wide range of materials. Semiconductor nanowires made of silicon, gallium nitride and indium phosphide have demonstrated remarkable optical, electronic and magnetic characteristics (for example, silica nanowires can bend light around very tight corners). Nanowires have potential applications in high-density data storage, either as magnetic read heads or as patterned storage media, and electronic and opto-electronic nanodevices, for metallic interconnects of quantum devices and nanodevices. The preparation of these nanowires relies on sophisticated growth techniques, which include selfassembly processes, where atoms arrange themselves naturally on stepped surfaces, chemical vapour deposition (CVD) onto patterned substrates, electroplating or molecular beam epitaxy (MBE). The ‘molecular beams’ are typically from thermally evaporated elemental sources.

d) BiopolymersThe variability and site recognition of biopolymers, such as DNA molecules, offer a wide range of opportunities for the self-organization of wire nanostructures into much more complex patterns. The DNA backbones may then, for example, be coated in metal. They also offer opportunities to link nano- and biotechnology in, for example, biocompatible sensors and small, simple motors. Such self-assembly of organic backbone nanostructures is often controlled by weak interactions, such as hydrogen bonds, hydrophobic, or van der Waals interactions (generally in aqueous environments) and hence requires quite different synthesis strategies to CNTs, for example. The combination of one-dimensional nanostructures consisting of biopolymers and inorganic compounds opens up a number of scientific and technological opportunities.

ไม่มีความคิดเห็น:

แสดงความคิดเห็น